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INTRODUCTION: Modern day contrellers for marine propulsion gas

turbines systems in today's Navy are of the mechanical type developed
over twenty years ago (1). With the U.S. Navy's commitment to gas
turbine propulsion well into the next century (2) a more modern,
efficient, reliable and flexibly compatible control system must be
designed to meet the needs of the future (3). Mechanical controllers
with their size and number of components can be maintenance nightmares
which require vast stock resources and extensive training programs for
maintenance personnel. In contrast, advances in microprocessor
technology and control design theory make possible the creation of a
new generation of control systems which offer digital compatibility,
redesign flexibility and simplicity; these attributes could reduce the
maintenance problems as well as increase existing naval marine
propulsion plant efficiencies.

The U.S. Navy's approach to large vessel marine propulsion has
been to purchase an aero derivative gas turbine, the General Electric
LM~2500. G.E. provided the control technology base for the navy by
applying the then existing control theory with new designs to follow
as technology is updated. Improvements have been implemented on the
engine to increase horsepower, weight reduction and other peripheral
systems but there has been no major design change to the control
system up to and including the DDG-51.

This report will look at modern day aero approaches to control
theory to see if they could be applied to naval marine propulsion

systems. The theory and the implementation will both be reviewed.
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This paper is a review of published literature on modern control
analysis for non linear systems. Proprietary analyses unquestionably

exist, but were not sought out for the purposes of the present review,

Theory: The marine propulsion gas turbine requires a regulator for
its control action as opposed to servo control. Servo control is a
slave/master relationship with the requirement of a fast response to
a gquickly changing input. A regulator action is typified by a timely
response to a slowly changing input. A servo control might be used
in a flight control system, where a regulator is suited as a Marine
Propulsion Gas Turbine controller.

Since both the marine propulsion gas turbine and the aero gas
turbines are in reality non-linear, Multiple Input Multiple oOutput
(MIMO) systems, the standard linear Bode and S-plane analysis cannot
be applied. Further, since there is not in existence an accepted
nonlinear control design method to use, other approaches must be
developed. Typically, low order linear models are formed by
"linearizing around a point," this forms the basis for the point
design of Linear Quadratic Regulator (LQR) theory (4). LOR theory
has been successfully applied in a number of programs, specifically
the F-100 turbofan engine (Fig. 1), for th¥ F-15 and F-16 Air Force
fighter planes, and theoretically applied to multivariable control
of VIOL approach for shipboard landing (5). Optimal servo control
has been applied to a gasoline engine test bed by members of the

faculty of engineering science, Osaka University in Japan (6). A
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Fig. 1. F-100 Control Model

major key to the F100 design approach was the technique of gain
scheduling. This technique was the link used to mate the Linear
Theory of LQR with the non linear system. In the controlled system,
the transition control block of Fig. 1 was used to control gain
switches through the gain schedule block. Here, the gain schedule was
a map of inputs versus states (Fig. 2) with gains being assigned to
an area on the grid. So, for a given input the transition control
selected the correct gain for stable control.

The LQOR theory used to design the system of Fig. 1 optimizes the
controller design based on inputs of various matrices and a
performance/cost function. 1In fact, each of the previously mentioned
applications started with a basic system model which was

controllable and observable:
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(t) + B u (t) Plant Model

C x (t) Observed Plant Response
where A, B, and C are state space matrices.

The general system description is shown in Fig. (3).
A Kalman filter (estimator) must be used when the system output
variables to be reqgulated are states which cannot be measured (4),
or if the measured quantities are not states, as in the marine
propulsion case (5).

The basic problem is posed as the minimization of a single-valued

performance/cost index equation of the form:




Gain Plant

Input Qutput
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Kalman Filter

Fig. 3 - Basic Control Model

o0
J = 5(;’95+g‘gg) Dt Both Q and R Matrices > 0
[ -]
The solution to this problem is:

"B P x(t)

-~

u(T) = -K x(t) = -R
where P is the solution to the riccatti equation:

0=-PA-A"P-Q+PBR'B'P
The R matrix accounts for the expenditure of energy of control
signals. These matrices, R and Q, are symmetric weighting matrices.
They are assigned by the choice of the system designer and are
balanced, or weighted, to produce the desired results. The
minimization of the performance/cost index, determines the elements
of the K matrix. These gains are the object of the controllers
design. The gains are then used in simulating the response of the
nonlinear controlled system. A cut and try approach is used to

choose R and Q until the simulated response is close to a desired

response.
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ongoing work at the Naval Postgraduate School using a Boeing
502-6a test facility, (Fig. 4), emulating marine propulsion using a
water brake dynamometer for propulsion load, has produced results
which lend strer.,Lth to the LQP design theory (ref. 3). Through
hardware and software implementation a data base has been generated
which when compared to a present computer simulation technique has

shown near linearity. Fig. (5)

IMPLEMENTATION: Control systems for marine gas turbines are for the

most part aero derivative systems which were developed over two
decades ago. The aero community has progressed forward to the from
the old analog systems to advanced digital systems through the use
of microprocessors. This approach could be a new design course for
the U.S. Navy's marine gas turbine program. Though the aero community
started work in this direction the marine gas turbine community was
divided on the direction to proceed. One side supported analog
control citing it's ability to handle any necessary computations for
control. Analog support triumphed and General Motors opted for this
direction resulting in the LM-2500 control system used up through the
DDG-51 today.
Fig. 6 depicts type of controller found on today's U.S. Navy FFG-7
class ships. (7)

Analog design technology begins with a configuration of standard
building blocks based on analog hardware components and modular
construction techniques. When hardware changes are required,

production delays result as well as causing back-up.
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support revisions (technical manual changes), and requiring additional
technical training. The end result may not be the best control system
and quite possibly very expensive. Analog control systems are not
very adaptable and any design changes may be major. On the opposing
side are the proponents of digital theory believing that a digital
based system would be faster, less expensive and more universal in its
application. The aero community decided to advance in this direction.
With the advent of the microprocessor, and its reliable and
inexpensive computing power, the aero control designers found a
control system which overrides the disadvantages of the analog system.
A significant improvement in cost, reliability, and performance (shown
in Fig 7 (8)) resulted. This has been demonstrated by use in a number

of
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applications. The first was the F-100 turbofan engine currently

installed in the F-15 and F-16 aircraft (4). The second application
was by Nagoya Aircraft Works of Mitsubishi Heavy Industries Ltd. of
Japan. They successfully demonstrated digital control of small gas
turbine engines, specifically 30 hp and 1000 hp. An Intel 8085
microprocessor was used and their achieved success clearly supports
the use of digital controls to reduce the cost, increase the
reliability and flexibility, as well as reduce the size and number of
components (9). Finally, a third application of a digital control
system was specifically designed for research on advanced digital
control logic. This research involved a small turboshaft engine, the
General Electric YT-700, used for small helicopters (10). A 2500 HP

dynamometer was used to
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absorb engine shaft horsepower (similar to the waterbrake dynamometer
use simulating propelier shaft loads at the Naval Postgraduate School
(7)) . Their purpose was to show improved power turbine speed
governino when compared to existing baseline control data. An Intel
8085 microprocessor based control system was designed and is
represented in Figures 8 and 9.

The results of the evaluation of the YT-700 digital controller
(Fig. 10) show reduced power turbine speed droop caused by unexpected
load changes. This realtime simulation and comparison to base-line
data also supports the case for developing controllers with digital

theory for marine gas turbine applications.

SUMMARY AND CONCLUSION: With the total ship system engineering
concept being developed for the future of U.S. Navy ship design (11),
a new control design approach for the marine gas turbine should be
developed. This design approach should take advantage of the large
scale integration of new computer methods for matrix and vector
manipulation to provide a more large scale control for gas turbines.
This approach is ideal for a turbine controller based on LQOR theory.
This should be accomplished simultaneously with the other ship design
requirements for future naval war ships. The marriage of Linear
Quadratic Regulator theory and digital control implementation, with
their distinct advantages, should provide for a more efficient,
reliable, less costly, and more dynamically flexible control systenm.
If more efficient control of fuel flow is

realized the implications to present and future naval warships
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would be enormous. With fuel costs rising and the defense budget
shrinking, two benefits could be realized. The first would be a lower

fuel budget while the second might be an increase in at-sea training
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time necessary to maintain the readiness of the more modern and highly
technical fleet in existence today.

LQR theory and digital control both make valuable contributions
to this new approach in the marine propulsion world. In the theory
half of the picture, LQR offers improved response to dynamic changes
in plant parameters over present alternatives. Also, through more
accurate modeling of multivariable non-linear systems, inefficient
response characteristics could be further reduced. A dual mode
controller (cruise and battle modes) might also be designed to provide
for the two principle operating requirements of a naval warship by
adjusting the gains to achieve these modes. Weighting 1in one
direction would provide efficient cruising while weighting in the
other direction would allow for quick response for battle conditions.
For digital implementations, more modern, faster microprocessors with
even greater computing power than those discussed herein exist today.
Since digital control was successfully realized with the older models
it stands to reason that the new ones will provide for even more
efficient control. Thus, for the above reasons it is strongly
recommended that further development work be invested in the
implementation of LQ controllers in digital hardware for marine gas

turbine propulsion systems.
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